
Formal Appendix: Resource Management and
Joint-Planning in Fragmented Societies

1 Intuition for results in Section 3.1
Symmetric Nash equilibrium request

Per the main text, we have an expression for the expected utility of player i:

E(ui) =


xi, if xi + x−i ≤ α
xi[β−(xi+x−i)]

β−α
, if α < xi + x−i ≤ β

0, else

(A.1)

Consider expected utility in the middle case, wherein the total request may be between α and β.
After some simplification, the first derivative is:

β − 2xi − x−i

β − α
(A.2)

Setting Equation 2 equal to 0 and solving for xi yields:

xi =
β − x−i

2
To focus on symmetric equilibria, we substitute (n − 1)xi for x−i. After simplifying, we have:

x∗i =
β

n + 1
This establishes half of the symmetric Nash equilibrium discussed in the main text.

To see the rest, note that the total symmetric equilibrium request nβ
β−α

is only greater than α when it
is true that nβ > α(n+1). Therefore, when that assumption is not met, β

n+1 is not the rational choice
for a self-interested decision-maker. Increasing the group-level request to α instead (and dividing it
equally given the focus on symmetric equilibria) provides everyone a higher payoff without risking
over extraction at all.

While it is in every player’s interests to increase her request from β

n+1 to α
n when nβ ≤ α(n + 1),

increasing her request any more would be suboptimal. To see this, compare a player’s expected
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utility here from α
n to their expected utility from α

n + ε, where ε is a small positive term. The ex-
pected utility of the former request is higher. In sum, this gives us the other half of the symmetric
Nash request presented in the main text.

Symmetric Pareto efficient request

We can express the expected utility of the community as a whole (who requests X) as:

E(ucomm) =


X, if X ≤ α
X[β−X]
β−α

, if α < X ≤ β

0, else

(A.3)

Community utility is maximized when X∗ =
β

2 (following a similar procedure as above). Note
that this will only be greater than α when β > 2α. In any other situation, the community could
maximize it’s utility by increasing its request to α instead. As noted above, requesting less than α
(the lower bound of the resource’s potential worth), would simply yield a loss of utility. Therefore,
for a set of players that makes symmetric decisions, the community welfare maximizing requests
for each player would be β

2n if β > 2α, or α
n otherwise.

Any outcome that maximizes community welfare is Pareto efficient (because Pareto improvements
are not possible). Therefore, those requests must be Pareto efficient. Moreover, because there is no
other symmetric outcome that returns as much as or greater utility to the community, they are also
the unique symmetric Pareto optimal requests.

2 Proposition A
I argue that pessimistic players assume there is as little merging outside their coalition as possible,
and optimistic players assume the opposite.

Consider game Γ1 (see the main text). Presume coalition S j considers not joining the grand coali-
tion under two extreme expectations. I specify players’ steady-state expected utility in equilibrium
(given each potential outcome), and then show that one is worse for S j than the other.

Singletons

Assume N\S j = {l1, ..., lq} ∀ l ∈ N /∈ S j

Expected utility of an outcome is based on multiplying a coalition’s payoff by the probability it
will receive that payoff. With a uniformly distributed resource, we have:

E(uS j) = xS j ∗
β −

∑n
i∈N xi

β − α

And for the case in question here, we have
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E(uS j) =

m∑
i∈S j

xi[β − xi − x−i∈S j − qxl/∈S j]
β − α

(A.4)

E(uS j) =
1

β − α

[∑
xiβ −

∑
x2

i −
∑

xix−i∈S j −
∑

qxl/∈S j xi

]
Presuming symmetry within coalitions (and among singleton players), this simplifies to:

1
β − α

[
βxS j − xi∈S j xS j − (m − 1)xi∈S j xS j − qxS j xl/∈S j

]
and further to:

1
β − α

[
βxS j −

1
m

x2
S j
−

(m − 1)
m

x2
S j
− qxS j xl/∈S j

]
Which results in the following first order condition:

2xS j = β − qxl/∈S j (A.5)

A similar procedure yields the first order condition for maximizing E(ul/∈S j):

xl/∈S j =
β − xS j

q + 1
(A.6)

Based on these, the equilibrium behavior of S j and each member of N\S j come out as:

x∗S j
= x∗l/∈S j

=
β

2 + q
(A.7)

Interestingly, in equilibrium each singleton outside S j makes the same request that S j makes col-
lectively. When the coalition structure is made up of a mix of singletons and coalitions, then, this
implies that singletons take advantage of the fact that coalitions tend to request less as a group.

Equation 4 in hand, I flesh out E(uS j) in Equation 5.

E(uS j) =

β

2+q [β − β

2+q −
qβ

2+q ]

β − α
=

β2

(2+q)2

β − α
(A.8)

Union

Assume N\S j = {l1 ∪ l2 ∪ ... ∪ lq} ∀ l ∈ N /∈ S j

Following the same general procedure as above yields this equilibrium behavior whenever there
are two decision-makers (regardless of the number of players in either coalition):

x∗S j
= x∗−S j

=
β

3
(A.9)

And this expression for the expected utility of S j:
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E(uS j) =

β

3 [β − 2β
3 ]

β − α
=

β2

9

β − α
(A.10)

Comparison

It is easy to see that S j is better off when all players in N\S j merge together anytime there is
more than one player outside S j.

β2

(2+q)2

β − α
<

β2

9

β − α

1
(2 + q)2 <

1
9

Players with pessimistic expectations assume their coalition faces a structure of singletons, and
players with optimistic expectations assume the opposite. �

3 Proposition B
Positive externalities

Consider Γ1, where we have Θ2. I employ proof by induction.

First, I establish that a merge between any two coalitions S j and S l improves v(S o) for some third
coalition. I refer to a coalition structure where the first two have merged as P2, and a structure in
which they have not as P1.

Consider an initial structure of singletons, wherein two of those singletons (aside from S o) de-
cide to merge. Recalling Equation 8 in Proposition A and the base model as outlined in section 3.1
of the main text, after some simplification we have:

vP2(S o) > vP1(S o)

β2

(2+q)2

β − α
>

β2

(n+1)2

β − α

This is true in the hypothetical case under consideration, where there are 2 players in the merged
coalition and therefore q = n − 2.

Consider now a scenario where all players but S o and some other singleton have merged. If this
other singleton and the coalition merge, leaving S o as a holdout, recalling Proposition A we have
the inequality:
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β2

9

β − α
>

β2

(2+q)2

β − α

Here, q = 2, which renders this statement true.

Finally, what if we consider a slightly different situation? What if a coalition of all other play-
ers (S o) witnesses a merge between two singleton holdouts (S j and S l)? Some reflection reveals
that the same inequality as above will result. In sum, merges in this game generate positive ex-
ternalities for uninvolved players no matter how many others are involved in the merge. Because
positive externalities hold in all these extreme circumstances, I argue that they hold in general. �

Efficiency

No coalition structure aside from the grand coalition will make the efficient (in this parameter
space) community-level request of β

2 . This follows, in part, from the fact that this game is not
subject to negative externalities.

However, we can verify that this community-level request is efficient more directly. Presume we
manipulate the behavior of players to introduce a tremble: we either increase or decrease the net
request by some amount ε. How does the community-level expected value of this outcome with a
tremble compare to that of a unitary player requesting β

2?

β

2 [β − β

2 ]
β − α

>
(β2 + ε)[β − β

2 − ε]
β − α

β

2 [β − β

2 ]
β − α

>
(β2 − ε)[β −

β

2 + ε]
β − α

Each reduces to the clearly true expression:

0 > −4ε2

The inefficiency introduced by this tremble increases with ε. This indicates that a community’s net
expected utility becomes strictly worse the farther that community’s total request gets from β

2 .

To see that only the grand coalition will make this Pareto efficient community level request in
Γ1, consider players’ behavior in two other circumstances: (1) when there is a coalition structure
of singletons; and (2) when the entire community has merged into two coalitions. The net requests
in these cases are nβ

n+1 and 2β
3 respectively (per section 3.1 in the main text and Equation 4 above).

β

2 is less than each of these, but 2β
3 is closer than nβ

n+1 . As the coalition-structure concentrates, then,
community-level behavior approaches efficient levels, but does not reach them in this parameter
space except through the grand coalition. �
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4 Proposition C
Pessimism

Presume that players in Γ1 have pessimistic expectations about those outside their coalition. Under
pessimism, I show that players will determine that remaining in the grand coalition is more valu-
able than defecting as a singleton or some subcoalition S j ⊂ N .

First, imagine some coalition of players that is considering acting separately from the grand coali-
tion. The value of remaining in the grand coalition for any i ∈ S j is on the left (following from
Proposition B, and research cited in the main text), and the value of acting separately from other
players is on the right (drawn from Proposition A).

β

2n [β − β

2 ]
β − α

>

β

m(2+q) [β −
β

2+q −
qβ

2+q ]

β − α
(A.11)

This becomes:

1
4n

>
1

m(2 + q)2

Which simplifies further to:

mq + 4m > 4

This is always true since m and q are positive integers. But what if a player with pessimistic expec-
tations considers acting alone, rather than diverging from the grand coalition with other players?
The term on the right is now drawn from section 3.1 of the main text, since under pessimism a
player acting alone simply expects to play a non-cooperative game.

β

2n [β − β

2 ]
β − α

>

β

n+1 [β − nβ
n+1 ]

β − α
(A.12)

This reduces to the following inequality, which returns true so long as n > 1.

1
4n

>
1

(n + 1)2

Under pessimistic expectations, each player’s expected utility in the grand coalition dominates
their expected utility in any possible S j ⊂ N . �

Optimism

The same claims do not always hold when players are optimistic about the behavior of the rest
of the coalition-structure outside their own coalition.

First, consider the value of acting alone to any optimistic player, drawn from the behavior deduced
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in Proposition A.

β

2n [β − β

2 ]
β − α

>

β

3 [β − 2β
3 ]

β − α
(A.13)

1
4n

>
1
9

The grand coalition only dominates here in trivial cases where there are two or less players. Lastly,
consider the value of remaining outside the grand coalition for individual, optimistic members of
some coalition S j.

β

2n [β − β

2 ]
β − α

>

β

3m [β − 2β
3 ]

β − α
(A.14)

1
4n

>
1

9m
When the proportion of the community considering acting apart from the grand coalition is greater
than 4

9 , the grand coalition dominates. When the proportion of the community is lower than this
threshold, this subset of optimistic players will not join the grand coalition. �

5 Proposition D

Consider Γ2, which is identical to Γ1 except that the social structure of the community prevents the
grand coalition from forming. Players are divided into h equally sized identity groups s.t. h < n.

Presume that players are weighing the merits of some focal outcome (z,Ph), wherein they co-
ordinate as much as the fabric of their community allows. I claim that any alternative outcome
(z,Pk>h) will decrease the net utility accruing to this community.

I argue this inductively, showing: (1) that when even one player diverges from maximal coor-
dination, this decreases the expected utility of the community writ large; and (2) that a similar
difference in community-level expected utilities still appears in the extreme case where we com-
pare the value of (z,Ph) to the value of a coalition structure of singletons (z,Pk=n).

First, per (1), compare the expected utility of the community as a whole under maximal coordina-
tion and optimistic expectations (on the left) to its expected utility when one player acts separately
from her social group (on the right). For h = 2, then we have:∑

j∈{1,2}
β

3 [β − 2β
3 ]

β − α
>

∑
j∈{1,2,3}

β

4 [β − 3β
4 ]

β − α
(A.15)

The term on the right follows from the utility maximizing behavior of the two coalitions (S 1 and
S 2) and a “defecting” player (who has stayed outside S 2), derived the same way as the behavior
derived in Proposition A:
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x∗S 1
= x∗S 2

= x∗l/∈S 2
=
β

4
Equation 15 simplifies to:

2β
3 [β − 2β

3 ]
β − α

>

3β
4 [β − 3β

4 ]
β − α

And further to the truism that 32 > 27.

I now turn to (2). The term on the left stays the same as Equation 15, but now the term on the
right becomes the sum of the expected utility of every player acting alone in the base game. Once
again, I presume h = 2, although this same point holds under more restrictive coalition structures.∑

j∈{1,2}
β

3 [β − 2β
3 ]

β − α
>

∑n
j=1

β

n+1 [β − nβ
n+1 ]

β − α
(A.16)

Equation 16 becomes:

2β
3 [β − 2β

3 ]
β − α

>

nβ
n+1 [β − nβ

n+1 ]
β − α

Which is true so long as we are not in a trivial case where n < 3.

Finally, observe that the difference in values applied by (2) is greater than the difference in val-
ues implied by (1) so long as n ≥ 4 (when n = 3, these differences are equivalent). Maximal
coordination cannot be Pareto improved by fracturing the coalition structure. �

6 Proposition E
The previous Proposition argues that maximal coordination is more valuable to the community as
a whole than any more fractured coalition structure. I now argue that no sub-coalition can gain by
diverging from maximal coordination under pessimistic expectations. Again, I rely on proof by
induction.

Consider some coalition S j that remains outside maximal coordination under Γ2, where G2 holds
(the community is divided in half). Members of S j are pessimistic, so the expected utility of mem-
bers of S j if they diverge from maximal coordination can be drawn from the right-hand side of
Equation 11 in Proposition C. Expected utility for any member under maximal coordination is
based on Equation 9. Recall that the number of players in S j is represented by m.

2β
3n [β − 2β

3 ]
β − α

>

β

m(2+q) [β −
β

2+q −
qβ

2+q ]

β − α
(A.17)

2
9n

>
1

m(2 + n − m)2
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Here, m is logically bound between 2 and n
2 − 1. This expression is if we plug in any value within

this range, so long as we assume a non-trivial case where n > 3.

Next, I consider the potential value to a pessimistic player of staying outside maximal coordination
alone, again assuming a community is divided in half by some identity division.

2β
3n [β − 2β

3 ]
β − α

>

β

n+1 [β − nβ
n+1 ]

β − α
(A.18)

2
9n

>
1

(n + 1)2

This is true under the same condition as Equation 17.

What if the game is played instead on graph Gn/2, where social fragmentation is so severe that
players can merge at most once? Only one comparison is needed here. Any pessimistic player
assessing the value of diverging from maximal coordination considers the expression below:

β

n+2 [β − nβ
n+2 ]

β − α
>

β

n+1 [β − nβ
n+1 ]

β − α
(A.19)

2
(n + 2)2 >

1
(n + 1)2

This is true in any case where n > 1. The left-hand side of the above inequality is based on deriving
players’ behavior in a coalition structure of teams of two (and then simplifying the expression of
the expected utility of a member of one of these teams). The end result is equivalent to substituting
in n

2 for n in the right hand side, dividing β

n+1 (outside the brackets) by 2, and simplifying. �

7 Proposition F

Consider Γ3 and Γ4, and two outcome pairs (z,Pk) and (z,P1), s.t.
∑

i∈z z = nzi = α. A coalition S j

considering diverging from either outcome pair under pessimistic expectations expects to instead
receive the value on the left below if it does so.

β2

(2+q)2

β − α
<

mα
n

(A.20)

This eventually becomes, presuming β = 2α:

4 < 4m + m(n − m)

Which is true for any non-trivial number of players and any possible |S j|. Therefore, pessimistic
players prefer (z,Pk) and (z,P1).

Readers may be concerned that, as in the base game (see 3.1), perhaps divergence of S j would
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lead the community to make a net request less than α. In such a case, they would adjust their
behavior, rendering Equation 20 less useful. Luckily, this concern is not pressing.

(q + 1)β
(2 + q)

> α

This reduces to the obviously true expression:

2q + 2 > 2 + q

Now, I consider the same question for players with optimistic expectations.

β2

9

β − α
<

mα
n

(A.21)

4n < m9

Similarly to Proposition C, for optimistic players in this parameter space, when the proportion
of the community considering acting apart from the grand coalition is greater than 4

9 , (z,Pk) and
(z,P1) dominate. Otherwise, the dominant outcome is a mixed coalition structure. �

8 Proposition G

Consider Γ5, and four possible network structures Phn , Ph, Ph′ , and Ph1 , wherein n leads to an
outcome in the pessimistic core that is more fractured than h, h leads to an outcome that is more
fractured than h′, and so forth. I address both claims in Result 6 below.

Since X is uniformly distributed, we have:

Pr
(∑

xi > X
)

= 1 −
β −

∑
x j

β − α
(A.22)

I claim that, for h and h′:

1 −
β −

∑
i∈Ph

xi

β − α
> 1 −

β −
∑

i∈Ph′
xi

β − α
(A.23)

Which reduces to: ∑
i∈Ph

xi >
∑
i∈Ph′

xi

Recall that I assume identity groups are all the same size. Therefore, under maximal coordination
in the pessimistic core, we have the equilibrium behavior outlined in section 3.1 (where n becomes
the number of coalitions k).

It is easy to see that since k > k′:
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kβ
k + 1

>
k′β

k′ + 1
This indicates that social fragmentation here increases the community’s net request, which in turn
means that it increases the probability of over-extraction.

Consider a comparison now for hn and h. Some reflection reveals that the result will be the same
as above. Finally, consider a comparison for h′ and h1.

k′β
k′ + 1

> α

By assumption here, β > 2α. Therefore, that statement is true.

Social fragmentation increases the number of decision-makers in a community while n remains
constant, and this increased social uncertainty puts more pressure on X. �

9 Proposition H

Consider a game in the parameter space Θ2 with pessimistic players and two social structures Gh

and Gh′ with h′ > h. Presume for instance that there was some split in the fabric of local society,
which decreased the extent of possible joint-planning. It is in the core for maximal coordination to
occur both before and after the split per other results in this study. In effect, the community with
Gh′ will see more fragmented resource use behavior and therefore a higher probability of over-
extraction.

I will now show that an increase in the probability of over-extraction is associated with a de-
crease in the expected utility of any individual player in this circumstance. An expression for this
probability is above in Equation 22. It follows that:

Pr
(∑

xi ≤ X
)

=
β −

∑
x j

β − α
(A.24)

If we multiply this by a coalition’s request, we have an expression for their expected joint utility
as shown in the main text. Because increases in fragmentation increase Equation 22, it follows
that they decrease Equation 24. If a coalition’s request somehow remained constant during this
process, that would be sufficient justification for my claim.

However, we expect that rational coalitions should adapt to the changing behavior of other players.
Below, I show that the expected utility of players under Gh is higher than that under Gh′ . To do so,
as elsewhere, I assume symmetry across coalitions. The term kh refers to the number of coalitions
under Gh, and other terms are defined similarly.

Eui|G
h > Eui|G

h′
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xh
i

[β − khxh
i

β − α

]
> xh′

i

[β − kh′ xh′
i

β − α

]
Given the equilibrium results that appear at the coalition level under this specific circumstance (see
Section 3.1), we can simplify that expression and eventually yield:

β2

(kh + 1)2 >
β2

(kh′ + 1)2

This is always true because kh′ > kh. Fragmenting the structure of society and therefore limiting
the potential scope of joint-planning decreases every player’s utility.
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